A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=-2对应的特征向量是ξ
3
.
问答题
问ξ
1
+ξ
2
是否是A的特征向量?说明理由;
【正确答案】正确答案:因已知Aξ
1
=2ξ
1
,Aξ
2
=2ξ
2
,故A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=2ξ
1
+2ξ
2
=2(ξ
1
+ξ
2
),故ξ
1
+ξ
2
仍是A的对应于λ
1
=λ
2
=2的特征向量.
【答案解析】
问答题
ξ
2
+ξ
3
是否是A的特征向量?说明理由;
【正确答案】正确答案:ξ
2
+ξ
3
不是A的特征向量.假设是,设其对应的特征值为μ,则有 A(ξ
2
+ξ
3
)=μ(ξ
2
+ξ
3
), 得2ξ
2
一2ξ
3
一μξ
2
一μξ
3
=(2一μ)
2
一(2+μ)ξ
3
=0 因2一μ和2+μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾,故ξ
2
+ξ
3
不是A的特征向量.
【答案解析】
问答题
证明:任意3维非零向量β都是A
2
的特征向量,并求对应的特征值.
【正确答案】正确答案:因A有特征值λ
1
=λ
2
=2,λ
3
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
,ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E, 从而对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量
【答案解析】