已知α
1
,α
2
及β
1
,β
2
均是3维线性无关向量组.
问答题
若γ不能由α
1
,α
2
线性表出,证明α
1
,α
2
,γ线性无关.
【正确答案】正确答案:设有数k
1
,k
2
,k
3
,使得k
1
α
1
+k
2
α
2
+k
3
γ=0,其中k
3
=0(若k
3
≠0,则

【答案解析】
问答题
证明存在3维向量δ,δ不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出.
【正确答案】正确答案:α
1
,α
2
是两个3维向量,不可能表出所有3维向量,β
1
,β
2
,也一样.若δ不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出,则δ即为所求. 现设δ
1
不能由α
1
,α
2
线性表出,但可由β
1
,β
2
线性表出,设为δ
1
=x
1
β
1
+x
2
β
2
; 设δ
2
不能由β
1
,β
2
表出,但可由α
1
,α
2
线性表出,设δ
2
=y
1
α
1
+y
2
α
2
,则向量δ=δ
1
+δ
2
既不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出,向量δ即为所求. 因若δ=δ
1
+δ
2
=k
1
α
1
+k
2
α
2
,则δ
1
=δ—δ
2
=(k
1
一y
1
)α
1
+(k
2
一y
2
)α
2
,这和δ
1
不能由线性表出矛盾.(或δ
2
=δ—δ
1
=(k
1
一x
1
)β
1
+(k
2
—x
2
)β
2
,这和δ
2
不能由β
1
,β
2
线性表出矛盾)
【答案解析】