【正确答案】正确答案:齐次线性方程组 α
1
x
1
+α
2
x
2
+…+α
n
x
n
=0 只有零解,故其系数矩阵(记为A)的秩r(A)=r(α
1
,α
2
,…,α
n
)=n,则矩阵A是可逆方阵. 齐次线性方程组 (α
1
+α
2
)x
1
+(α
2
+α
3
)x
2
+…+(α
n-1
+α
n
)x
n-1
+(α
n
+α
1
)x
n
=0 (*) 的系数矩阵(记为B)和A有如下关系: [α
1
+α
2
,α
2
+α
3
,…,α
n-1
+α
n
,α
n
+α
1
]=[α
1
,α
2
,…,α
n
]

记为B=AC.因A可逆,故有r(B)=r(C),而

当n=2k+1时,|C|=2≠0,故r(B)=r(C)=n,方程组(*)只有零解. 当n=2k时,|C|=0,故r(B)=r(C)<n,方程组(*)有非零解. 当n=2k时,B=AC,A可逆.故Bx=0和Cx=0是同解方程组,故只需求解齐次线性方程组 Cx=0即可. 对C作初等行变换,将第i行的一1倍加到第i+1行(i=1,2,…,n一1).
