选择a,b,使Pdx+Qdy在区域D={(x,y)|x 2 +y 2 ≠0}内为某函数u(x,y)的全微分,其中
【正确答案】正确答案:先确定a,b,使 ,(x,y)∈D. =1/(x 2 +y 2 ) 4 [(2y+2x)(x 2 +y 2 ) 2 -2(x 2 +y 2 ).2y(y 2 +2xy+ax 2 )] =2/(x 2 +y 2 ) 2 [(x+y)(x 2 +y 2 )-2y(y 2 +2xy+ax 2 )], =-1/(x 2 +y 2 ) 4 [(2x+2y)(x 2 +y 2 ) 2 -2(x 2 +y 2 )2x(x 2 +2xy+by 2 )] =2/(x 2 +y 2 ) 3 [-(x+y)(x 2 +y 2 )+2x(x 2 +2xy+by 2 )], (x+y)(x 2 +y 2 )-2y(y 2 +2xy+ax 2 ) =-(x+y)(x 2 +y 2 )+2x(x 2 +2xy+by 2 ) 2(x 2 +xy 2 +yx 2 +y 2 )-2y 3 -4xy 2 -2ax 2 y=2x 3 +4x 2 y+2bxy 2 -2xy 2 +2(1-a)x 2 y=4x 2 y+2bxy 2 -2(b+1)xy 2 -2(a+1)x 2 y=0 a=-1,b=-1. 此时 因D不是单连通的, 在D成立不足以保证Pdx+Qdyヨ原函数. 进一步讨论是否可直接求出原函数.取特殊路径如图10.11及 u(x,y)=∫ 0 x P(x,1)dx+∫ 1 y Q(x,y)dy (第二个积分中x为常量),将 因此u=
【答案解析】