【正确答案】正确答案:先确定a,b,使

,(x,y)∈D.

=1/(x
2
+y
2
)
4
[(2y+2x)(x
2
+y
2
)
2
-2(x
2
+y
2
).2y(y
2
+2xy+ax
2
)] =2/(x
2
+y
2
)
2
[(x+y)(x
2
+y
2
)-2y(y
2
+2xy+ax
2
)],

=-1/(x
2
+y
2
)
4
[(2x+2y)(x
2
+y
2
)
2
-2(x
2
+y
2
)2x(x
2
+2xy+by
2
)] =2/(x
2
+y
2
)
3
[-(x+y)(x
2
+y
2
)+2x(x
2
+2xy+by
2
)],

(x+y)(x
2
+y
2
)-2y(y
2
+2xy+ax
2
) =-(x+y)(x
2
+y
2
)+2x(x
2
+2xy+by
2
)

2(x
2
+xy
2
+yx
2
+y
2
)-2y
3
-4xy
2
-2ax
2
y=2x
3
+4x
2
y+2bxy
2

-2xy
2
+2(1-a)x
2
y=4x
2
y+2bxy
2

-2(b+1)xy
2
-2(a+1)x
2
y=0

a=-1,b=-1. 此时

因D不是单连通的,

在D成立不足以保证Pdx+Qdyヨ原函数. 进一步讨论是否可直接求出原函数.取特殊路径如图10.11及 u(x,y)=∫
0
x
P(x,1)dx+∫
1
y
Q(x,y)dy (第二个积分中x为常量),将

因此u=
