问答题 设G={[1],[2],[3],[4],[5],[6]},G上的二元运算×7如表5-36所示.(G,×7)是循环群吗?若是,请找出它的生成元.
   
表5-36
×7 [1] [2] [3] [4] [5] [6]
[1] [1] [2] [3] [4] [5] [6]
[2] [2] [4] [6] [1] [3] [5]
[3] [3] [6] [2] [5] [1] [4]
[4] [4] [1] [5] [2] [6] [3]
[5] [5] [3] [1] [6] [4] [2]
[6] [6] [5] [4] [3] [2] [1]
【正确答案】显然,(G,×7)是封闭的,具有结合律.[1]为它的单位元,[2]与[4]、[3]与[5]互为逆元,[6]的逆元是[6].故(G,×7)是群.
   通过观察可知:
   [3]2=[3]×7[3]=[2],[3]3=[3]×7[3]2=[3]×7[2]=[6],
   [3]4=[3]×7[3]3=[3]×7[6]=[4],[3]5=[3]×7[3]4=[3]×7[4]=[5],
   [3]6=[3]×7[3]5=[3]5×7[5]=[1],
   所以,[3]是群(G,×7)的生成元.
【答案解析】