问答题
设G={[1],[2],[3],[4],[5],[6]},G上的二元运算×
7
如表5-36所示.(G,×
7
)是循环群吗?若是,请找出它的生成元.
表5-36
×7
[1]
[2]
[3]
[4]
[5]
[6]
[1]
[1]
[2]
[3]
[4]
[5]
[6]
[2]
[2]
[4]
[6]
[1]
[3]
[5]
[3]
[3]
[6]
[2]
[5]
[1]
[4]
[4]
[4]
[1]
[5]
[2]
[6]
[3]
[5]
[5]
[3]
[1]
[6]
[4]
[2]
[6]
[6]
[5]
[4]
[3]
[2]
[1]
【正确答案】
显然,(G,×
7
)是封闭的,具有结合律.[1]为它的单位元,[2]与[4]、[3]与[5]互为逆元,[6]的逆元是[6].故(G,×
7
)是群.
通过观察可知:
[3]
2
=[3]×
7
[3]=[2],[3]
3
=[3]×
7
[3]
2
=[3]×
7
[2]=[6],
[3]
4
=[3]×
7
[3]
3
=[3]×
7
[6]=[4],[3]
5
=[3]×
7
[3]
4
=[3]×
7
[4]=[5],
[3]
6
=[3]×
7
[3]
5
=[3]
5
×
7
[5]=[1],
所以,[3]是群(G,×7)的生成元.
【答案解析】
提交答案
关闭