问答题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且
问答题
ξ
1
,ξ
2
∈(0,3),使得f"(ξ
1
)=f"(ξ
2
)=0.
【正确答案】
【答案解析】[证明]

其中0<c<2.
因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,
由介值定理,存在x
0
∈[2,3],使得

即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),
由罗尔定理,存在ξ
1
∈(0,c)

(0,3),ξ
2
∈(c,x
0
)

问答题
存在ξ∈(0,3),使得f"(ξ)-2f"(ξ)=0.
【正确答案】
【答案解析】[证明] 令φ(x)=e
-2x
f"(x),φ(ξ
1
)=φ(ξ
2
)=0,
由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)
