设f(x)在[a,b]可积,求证:φ(x)=∫
x
0
x
f(u)du在[a,b]上连续,其中x
0
∈[a,b]
【正确答案】
正确答案:
,x+△x∈[a,b],考察 φ(x+△x)-φ(x)=∫
x
0
x+△x
f(u)du-∫
x
0
x
f(u)du=∫
x
x+△x
f(u)du, 由f(x)在[a,b]可积
f(x)在[a,b]有界.即|f(x)|≤M(x∈[a,b]),则 |φ(x+△x)-(x)|≤|∫
x
x+△x
|f(u)|du|≤M|△x|. 因此,
,x+△x∈[a,b],有
【答案解析】
提交答案
关闭