单选题 若函数f(x)的二阶导数连续,且满足f"(x)-f(x)=x,求
【正确答案】正确答案:由f(x)=f"(x)一x,可得f(x)cos xdx=f"(x)cos xdx—xcos xdx =cos xd[f'(x)]一0=cos xf'(x)(一sin x)f'(x)dx =一f'(π)+f'(一π)十sin xf(x)cos xf(x)dx =一[f'(π)一f'(一π)]一f(x)cos xdx,f(x)cos xdx=一
【答案解析】