如图,C
1
和C
2
分别是y=1/2(1+e
x
)和y=e
x
的图形,过点(0,1)的曲线C
3
是一单调增函数的图形。过C
2
上任一点M(x,y)分别作垂直于x轴和y轴的直线l
x
和l
y
。记C
1
,C
2
与l
x
所围图形的面积为S
1
(x);C
2
,C
3
与l
y
所围图形的面积为S
2
(y)。如果总有S
1
(x)=S
2
(y),求曲线C
3
的方程x=φ(y)。
【正确答案】
正确答案:如图,有S
1
(x)=∫
0
x
[e
t
-
(1+e
t
]dt=1/2(e
x
-x-1), S
2
(y)=∫
1
y
[lnt-φ(t)]dt, 由题设,得 1/2(e
x
-x-1)=∫
1
y
[lnt-φ(t)]dt, 而y=e
x
,于是 1/2(y-lny-1)=∫
1
y
[lnt-φ(t)]dt, 两边对y求导得 1/2(1-
)=lny-φ(y), 故所求的函数关系为 x=φ(y)=lny-
【答案解析】
提交答案
关闭