解答题
设A,B为三阶矩阵,且A~B,且λ
1
=1,λ
2
=2为A的两个特征值,|B|=2,求
【正确答案】
【答案解析】
[解] 因为A~B,所以A,B特征值相同,设另一特征值为λ
3
,由|B|=λ
1
λ
2
λ
3
=2得λ
3
=1.A+E的特征值为2,3,2,(A+E)
-1
的特征值为
,则
.因为B的特征值为1,2,1,所以B
*
的特征值为
,即为2,1,2,于是|B
*
|=4,|(2B)
*
|=|4B
*
|=4
3
|B
*
|=256,故
提交答案
关闭