问答题
利用变换y=f(e
x
)求微分方程y"一(2e
x
+1)y'+e
2x
y=e
3x
的通解.
【正确答案】正确答案:令t=e
x
,则y=(t),y'=f'(t).e
x
=tf'(t), y"=[tf'(t)]'
x
=e
x
f'(t)+tf"(t).e
x
=tf'(t)+t
2
f"(t), 代入方程得t
2
f"(t)+tf'(t)一(2t+1)tf'(t)+t
2
f(t)=t
3
,即 f"(t)一2f'(t)+f(t)=t, 解得f(t)=(C
1
+C
2
t)e
t
+t+2,所以原方程的通解为 y=(C
1
+C
2
e
x
)e
ex
+e
x
+2,其中C
1
,C
2
为任意常数.