【正确答案】正确答案:(Ⅰ)(用泰勒公式)由于当x→0时分母是x
3
阶的无穷小量,而当x→0时 e
x
=1+x+

+o(x
3
),sinx=x-

+o(x
3
),

从而当x→0时,e
x
sinx=x+x
2
+

x
3
+o(x
3
),e
x
sinx-x(1+x)=

x
3
+o(x
3
). 因此

(Ⅱ)由于f(x)=arctanx在点x=0有如下导数

因此当x→0时 f(x)=f(0)+f'(0)x+

f'''(0)x
3
+o(x
3
), arctanx=x-

x
3
+o(x
3
) arctanx-sinx=

x
3
+o(x
3
), e
x2
-1=1+x
2
+

+o(x
4
)-1=x
2
+o(x
3
),ln(1+x)=x-

+o(x
2
), [ln(1+x)]
2
=

=x
2
-x
3
+2xo(x
2
)-x
2
o(x
2
)+

+[o(x
2
)]
2
=x
2
-x
3
+o(x
3
),[ln(1+x)]
2
-e
x2
+1=-x
3
+o(x
3
).
