+o(x
3
),sinx=x-
+o(x
3
),
从而当x→0时,e
x
sinx=x+x
2
+
x
3
+o(x
3
),e
x
sinx-x(1+x)=
x
3
+o(x
3
). 因此
(Ⅱ)由于f(x)=arctanx在点x=0有如下导数
因此当x→0时 f(x)=f(0)+f'(0)x+
f'''(0)x
3
+o(x
3
), arctanx=x-
x
3
+o(x
3
) arctanx-sinx=
x
3
+o(x
3
), e
x2
-1=1+x
2
+
+o(x
4
)-1=x
2
+o(x
3
),ln(1+x)=x-
+o(x
2
), [ln(1+x)]
2
=
=x
2
-x
3
+2xo(x
2
)-x
2
o(x
2
)+
+[o(x
2
)]
2
=x
2
-x
3
+o(x
3
),[ln(1+x)]
2
-e
x2
+1=-x
3
+o(x
3
).
