求下列极限:
【正确答案】正确答案:(Ⅰ)(用泰勒公式)由于当x→0时分母是x 3 阶的无穷小量,而当x→0时 e x =1+x+ +o(x 3 ),sinx=x- +o(x 3 ), 从而当x→0时,e x sinx=x+x 2 + x 3 +o(x 3 ),e x sinx-x(1+x)= x 3 +o(x 3 ). 因此 (Ⅱ)由于f(x)=arctanx在点x=0有如下导数 因此当x→0时 f(x)=f(0)+f'(0)x+ f'''(0)x 3 +o(x 3 ), arctanx=x- x 3 +o(x 3 ) arctanx-sinx= x 3 +o(x 3 ), e x2 -1=1+x 2 + +o(x 4 )-1=x 2 +o(x 3 ),ln(1+x)=x- +o(x 2 ), [ln(1+x)] 2 = =x 2 -x 3 +2xo(x 2 )-x 2 o(x 2 )+ +[o(x 2 )] 2 =x 2 -x 3 +o(x 3 ),[ln(1+x)] 2 -e x2 +1=-x 3 +o(x 3 ).
【答案解析】