【正确答案】正确答案:将(1,-1,1,-1)
T
代入第1个方程,可得λ=μ。 (Ⅰ)已知方程组的一个特解为(1,-1,1,-1)
T
,因此只需求出导出组的基础解系即可写出通解。 对系数矩阵作初等行变换:

如果2λ-1=0,则

于是得(1,-3,1,0)
T
和(

,-1,0,1)
T
为导出组的基础解系,因此通解为 (1,-1,1,-1)
T
+c
1
(1,-3,1,0)
T
+c
2
(

,-1,0,1)
T
,c
1
,c
2
是任意常数。 如果2λ-1≠0,则

即得(-1,

,1)
T
为导出组的基础解系,此时通解为 (1,-1,1,-1)
T
+c(-1,

,1)
T
,c是任意常数。 (Ⅱ)当2λ-1=0时,由已知条件x
2
=x
3
及(Ⅰ)中结论,则有 -1-3c
1
-c
2
=1+c
1
, 从而c
2
=-2-4c
1
,此时通解为 (2,1,1,-3)
T
+c
1
(3,1,1,-4)
T
。 当2λ-1≠0时,由(Ⅰ)中结果,并结合已知条件x
2
=x
3
,则有
