问答题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,-1,-3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
,
(Ⅰ)a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出。
(Ⅱ)在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式。
【正确答案】正确答案:两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关→r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性相关→r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
),因此应该从计算这两个秩着手,以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵:(α
1
,α
2
,α
3
,α
4
,β)

【答案解析】