甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
【正确答案】正确答案:依题意,有 P(A
1
)=C
3
1
C
2
2
/C
5
3
=3/10,P(A
2
)=C
3
2
C
2
1
/C
5
3
=6/10P(A
3
)=C
3
3
/C
5
3
=1/10; P(B
0
|A
1
)=C
2
2
/C
3
2
=1/3,P(B
0
|A
2
)=P(B
0
|A
3
)=0, P(B
1
|A
1
)=C
2
1
/C
3
2
=2/3,P(B
1
|A
2
)=C
2
2
/C
3
2
=2/3,P(B
1
|A
3
)=0, P(B
2
|A
1
)=0,P(B
2
|A
2
)=1/C
3
2
=1/3,P(B
2
|A
3
)=1. 应用全概率公式 P(B
0
)=

P(A
i
)P(B
0
|A
i
)=P(A
1
)×P(B
0
|A
1
)=1/10, P(B
1
)=P(A
1
)P(B
1
|A
1
)+P(A
2
)P(B
1
|A
2
)

P(B
2
)=1-P(B
0
)-P(B
1
)=3/10, 或P(B
2
)=P(A
2
)P(B
2
|A
2
)+P(A
3
)P(B
2
|A
3
)

P(C|B
0
)=0,P(C|B
1
)=1/2,P(C|B
2
)=1, P(C)=P(B
1
)P(C|B
1
)+P(B
2
)P(C|B
2
)

(Ⅱ)P(C|A
3
)=1,P(A
3
|C)

【答案解析】