甲盒内有3个白球与2个黑球,从中任取3个球放入空盒乙中,然后从乙盒内任取2个球放入空盒丙中,最后从丙盒内再任取1个球,试求:(Ⅰ)从丙盒内取出的是白球的概率;(Ⅱ)若从丙盒内取到白球,当初从甲盒内取到3个白球的概率.
【正确答案】正确答案:依题意,有 P(A 1 )=C 3 1 C 2 2 /C 5 3 =3/10,P(A 2 )=C 3 2 C 2 1 /C 5 3 =6/10P(A 3 )=C 3 3 /C 5 3 =1/10; P(B 0 |A 1 )=C 2 2 /C 3 2 =1/3,P(B 0 |A 2 )=P(B 0 |A 3 )=0, P(B 1 |A 1 )=C 2 1 /C 3 2 =2/3,P(B 1 |A 2 )=C 2 2 /C 3 2 =2/3,P(B 1 |A 3 )=0, P(B 2 |A 1 )=0,P(B 2 |A 2 )=1/C 3 2 =1/3,P(B 2 |A 3 )=1. 应用全概率公式 P(B 0 )= P(A i )P(B 0 |A i )=P(A 1 )×P(B 0 |A 1 )=1/10, P(B 1 )=P(A 1 )P(B 1 |A 1 )+P(A 2 )P(B 1 |A 2 ) P(B 2 )=1-P(B 0 )-P(B 1 )=3/10, 或P(B 2 )=P(A 2 )P(B 2 |A 2 )+P(A 3 )P(B 2 |A 3 ) P(C|B 0 )=0,P(C|B 1 )=1/2,P(C|B 2 )=1, P(C)=P(B 1 )P(C|B 1 )+P(B 2 )P(C|B 2 ) (Ⅱ)P(C|A 3 )=1,P(A 3 |C)
【答案解析】