【正确答案】正确答案:由A的特征多项式 |λE-A|=

=(λ-6)
2
(λ+2), 知矩阵A的特征值是λ
1
=λ
2
=6,λ
3
=-2.由于矩阵A可以相似对角化,故λ=6必有2个线性无关的特征向量,那么由 r(6E-A)=

=1, 得知a=0.因此χ
T
Aχ=2χ
1
2
+2χ
2
2
+6χ
3
2
+10χ
1
χ
2
. 二次型的矩阵为A
1
=

.由 |λE-A
1
|=

=(λ-6)(λ-7)(λ+3), 知二次型χ
T
Aχ=χ
T
A
1
χ的特征值是6,7,-3. 对λ=6,由(6E-A
1
)χ=0得α
1
=(0,0,1)
T
. 对λ=7,由(7E-A
1
)χ=0得α
2
=(1,1,0)
T
. 对λ=-3,由(-3E-A
1
)χ=0得α
3
=(1,-1,0)
T
. 不同特征值的特征向量已正交,故只需单位化,有

那么,令P=(γ
1
,γ
2
,γ
3
)
