问答题
设方程xy
2
+e
y
=cos(x+y
2
),求y".
【正确答案】
【答案解析】[解法一]y
2
+2xyy"+e
y
y"=-sin(x+y
2
)·(1+2yy"),
[解法二]令F(x,y)=xy
2
+e
y
-cos(x+y
2
).
因为F"
x
=y
2
+sin(x+y
2
),F"
y
=2xy+e
y
+2ysin(x+y
2
),
所以
[解法三]d(xy
2
+e
y
)=d[cos(x+y
2
)],
y
2
dx+2xydy+e
y
dy=-sin(x+y
2
)(dx+2ydy),
[2xy+e
y
+2ysin(x+y
2
)]dy=-[y
2
+sin(x+y
2
)]dx,
