问答题 设方程xy 2 +e y =cos(x+y 2 ),求y".
【正确答案】
【答案解析】[解法一]y 2 +2xyy"+e y y"=-sin(x+y 2 )·(1+2yy"),

[解法二]令F(x,y)=xy 2 +e y -cos(x+y 2 ).
因为F" x =y 2 +sin(x+y 2 ),F" y =2xy+e y +2ysin(x+y 2 ),
所以
[解法三]d(xy 2 +e y )=d[cos(x+y 2 )],
y 2 dx+2xydy+e y dy=-sin(x+y 2 )(dx+2ydy),
[2xy+e y +2ysin(x+y 2 )]dy=-[y 2 +sin(x+y 2 )]dx,