设函数f(u,v)具有2阶连续偏导数,y=f(e x ,cosx),求dy/dx| x=0 ,d 2 y/dx 2 | x=0
【正确答案】正确答案:y=f(e x ,cosx) y(0)=f(1,1) dy/dx| x=0 =f" 1 e x +f" 2 (-sinx))| x=0 =f" 1 (1,1).1+f" 2 (1,1).0=f" 1 (1,1) d 2 y/dx 2 =f" 11 e 2x +f" 12 e x (-sinx)+f" 21 e x (-sinx)+f" 22 sin 2 x+f" 1 e x -f" 2 cosx
【答案解析】