填空题
10.
[2008年] 设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为______.
1、
【正确答案】
1、λ=1
【答案解析】
因矩阵A满足矩阵等式,可用定义求出A的非零特征值.事实上,因Aα
1
=0,故
A(2α
1
+α
2
)=2Aα
1
+Aα
2
一Aα
2
=2α
1
+α
2
=1·(2α
1
+α
2
).
又因α
1
,α
2
线性无关,故2α
1
+α
2
≠0,由定义知λ=1为A的非零特征值.
提交答案
关闭