【正确答案】正确答案:根据X与Y相互独立且密度函数已知,因此可以用两种方法:分布函数法和公式法求出U、V的概率密度。 (Ⅰ)分布函数法。根据题设知(X,Y)联合概率密度 f(x,y)=f
X
(x)f
Y
(y)=

所以U=XY的分布函数为(如图3—3—9所示) F
U
(u)=P{XY≤u}=

(1)当u≤0时,F
U
(u)=0;当u≥1时,F
U
(u)=1; (2)当0<u<1时, F
U
(u)=∫
0
u
dx∫
0
1
dy+∫
u
1
dx

dy=u+∫
u
1

dx=u—ulnu。 综上得

(Ⅱ)公式法。设Z=X—Y=X+(一Y)。其中X与(一Y)独立,概率密度分别为

根据卷积公式得Z的概率密度 f
Z
(z)=∫
—∞
+∞
f
X
(z—y)f
—Y
(y)dy=∫
—1
0
f
X
(z—y)dy

V=|X—Y|=|Z|的分布函数为F
V
(υ)=P{|Z|≤υ},可得 当υ≤0时,F
V
(υ)=0;当υ>0时,F
V
(υ)=P{一υ≤Z≤υ}=∫
—υ
u
f
Z
(z)dz。 由此知,当0<υ<1时, F
V
(υ)=∫
—υ
0
(z+1)dz+∫
0
u
f
Z
(1一z)dz=2υ一υ
2
; 当υ≥1时, F
V
(υ)=∫
—υ
—1
f
Z
0dz+∫
—1
0
f
Z
(z+1)dz+∫
0
1
(1一z)dz+∫
1
0
0dz=l F
V
(υ)=∫
—υ
—1
0dz+∫
—1
0
(z+1)dz+∫
0
1
(一z)dz+∫
1
υ
0dz=1。 综上可得
