【正确答案】正确答案:相交与相切即f(x
0
)=g(x
0
),f'(x
0
)=g'(x
0
).若又有曲率相同,即

亦即|f"(x
0
)|=|g"(x
0
)|. 由二阶导数的连续性及相同的凹凸性得,或f"(x
0
)=g"(x
0
)=0或f"(x
0
)与g"(x
0
)同号,于是f"(x
0
)=g"(x
0
).因此,在所设条件下,曲线y=f(x),y=g(x)在(x
0
,y
0
)处相交、相切且有相同曲率

(x
0
)-g(x
0
)=0,f'(x
0
)-g'(x
0
)=0,f"(x
0
)-g"(x
0
)=0.

f(x)-g(x)=f(x
0
)-g(x
0
)+[f(x)-g(x)]'

(x-x
0
) +

[f(x)-g(x)]"
