设f(x),g(x)在x=x 0 某邻域有二阶连续导数,曲线y=f(x)和y=g(x)有相同的凹凸性.求证:曲线y=f(x)和y=g(c)在点(x 0 ,y 0 )处相交、相切且有相同曲率的充要条件是:f(x)-g(x)=o((x-x 0 ) 2 )(x→x 0 ).
【正确答案】正确答案:相交与相切即f(x 0 )=g(x 0 ),f'(x 0 )=g'(x 0 ).若又有曲率相同,即 亦即|f"(x 0 )|=|g"(x 0 )|. 由二阶导数的连续性及相同的凹凸性得,或f"(x 0 )=g"(x 0 )=0或f"(x 0 )与g"(x 0 )同号,于是f"(x 0 )=g"(x 0 ).因此,在所设条件下,曲线y=f(x),y=g(x)在(x 0 ,y 0 )处相交、相切且有相同曲率 (x 0 )-g(x 0 )=0,f'(x 0 )-g'(x 0 )=0,f"(x 0 )-g"(x 0 )=0. f(x)-g(x)=f(x 0 )-g(x 0 )+[f(x)-g(x)]' (x-x 0 ) + [f(x)-g(x)]"
【答案解析】