设A=E+αβ
T
,其中α=[a
1
,a
2
,…,a
n
]
T
≠0,β=[b
1
,b
2
,…,b
n
]
T
≠0,且α
T
β=2.
问答题
求A的特征值和特征向量;
【正确答案】
正确答案:设 (E+αβ
T
)ξ=λξ. ① 左乘β
T
,β
T
+(E+αβ
T
)ξ=(β
T
+β
T
αβ
T
)ξ=(1+β
T
α)β
T
ξ=λβ
T
ξ, 若β
T
ξ≠0,则λ=1+β
T
α=3;若β
T
ξ=0,则由①式,λ1. λ=1时, (E-A)X=-αβ
T
X=
【答案解析】
问答题
求可逆矩阵P,使得P
-1
Ap=A.
【正确答案】
正确答案:取P=[ξ
1
,ξ
2
,…,ξ
n-1
,ξ
n
]=
【答案解析】
提交答案
关闭