【正确答案】(Ⅰ)利用一阶微分形式不变性求得
d(ysinx)-dcos(x-y)=0,
即sinxdy+ycosxdx+sin(x-y)(dx-dy)=0,
整理得[sin(x-y)-sinx]dy=[ycosx+sin(x-y)]dx,
故

(Ⅱ)将原方程两边取对数,得等价方程

ln(x
2+y
2)=arctan

(*)
现将方程两边求微分得

化简得xdx+ydy=xdy-ydx,即(x-y)dy=(x+y)dx,
由此解得

为求y'',将y'满足的方程(x-y')y'=x+y两边再对x求导,即得
(1-y')y'+(x-y)y''=1+y'

代入y'表达式即得
