问答题 继续做上题。利用lnGDP与lnCONS的数据。
【正确答案】由于lnGDP与lnCONS都是一阶单整的,做lnCONS关于lnGDP的OLS回归,得表9-19所示的结果。
   

表9-19

Dependent Variable:LOG(CONS)

Included observations:23

Variable
Coefficient
Std.Error
t-Statistic
Prob.
C
-0.364518
0.065934
-5.528577
0.0000
MA(5)
0.964861
0.006697
144.0714
0.0000
R-squared
0.998989
Mean dependent var
9.077676
Adjusted R-squared
0.998941
S.D. dependent var
1.062404
S.E. of regression
0.034570
Akaike info criterion
-3.808700
Sum squared resid
0.025097
Schwarz criterion
-3.709961
Log likelihood
45.80004
F-statistic
20756.58
Durbin-Watson stat
0.529594
Prob(F-statistic)
0.000000

   记该回归的残差项为et,对它进行ADF检验,经尝试,一个不包括截距项、趋势项与差分滞后项的检验模型如表9-20所示。
   

表9-20

ADF Test Statistic
-2.371247
1/%
Critical Value*
-2.6756
5/%
Critical Value
-1.9574
10/%
Critical Value
-1.6238
*MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation

Dependent Variable:D(E)
Included observations:22 after adjusting endpoints
Variable
Coefficient
Std.Error
t-Statistic
Prob.
E(-1)
-0.342555
0.144462
-2.371247
0.0274
R-squared
0.183479
Mean dependent var
0.004529
Adjusted R-squared
0.183479
S.D. dependent var
0.024727
S.E. of regression
0.022344
Akaike info criterion
-4.720143
Sum squared resid
0.010484
Schwarz criterion
-4.670550
Log likelihood
52.92157
Durbin-Watson stat
1.464892

   可见,在5/%的显著性水平下,拒绝存在单位根的假设,表明残差序列et是平稳的。由此知,lnGDP与lnCONS存在(1,1)阶协整关系。
【答案解析】
【正确答案】在(1)的基础上,将残差序列et作为误差修正项,可建立如表9-21所示的误差修正模型。
   

表9-21

Dependent Variable:D(LOG(CONS))

Included observations:22 after adjusting endpoints

Variable
Coefficient
Std.Error
t-Statistic
Prob.
D(LOG(GDP))
0.964585
0.030821
31.29639
0.0000
E(-1)
-0.342796
0.150448
-2.278505
0.0338
R-squared
0.888026
Mean dependent var
0.145198
Adjusted R-squared
0.882428
S.D. dependent var
0.066773
S.E. of regression
0.022896
Akaike info criterion
-4.629238
Sum squared resid
0.010484
Schwarz criterion
-4.530052
Log likelihood
52.92162
Durbin-Watson stat
1.464548

   尽管D.W.值为1.46,但拉格朗日乘数检验结果如表9-22所示。
   

表9-22

F-statistic
2.142235
Probability
0.159641
Obs*R-squared
1.529664
Probability
0.216163

   可见模型已不存在序列相关性。因此,最终的误差修正模型为
   △lnCONSt=0.9645△lnGDPt-0.3428(lnCONSt-1+0.3645-0.9649lnGDPt-1)
【答案解析】