选择题 2.[2016年] 设函数f(x)在(一∞,+∞)内连续,其导函数y′的图形如图1.2.5.4所示,则( ).
【正确答案】 B
【答案解析】 可利用定理1.2.5.1(函数取得极值的第一充分条件)判别函数f(x)有多少个极值点.可利用命题1.2.5.3(1)判别点(x0,f(x0))是曲线y=f(x)的拐点.
由导函数的图形1.2.5.4易看出,导数为0的点有x=a,b,c,d.它们是可导函数取极值的候选点.
由图易看出:当x<a时,f′(x)>0;当x>a时,f′(x)<0.由定理1.2.5.1(1)可判别x=a为f(x)的极大值点;
当x<c时,f′(x)<0;当x>c时,f′(x)>0.由定理1.2.5.1(2)可判别x=c为f(x)的极小值点.
但当x<b时,f′(x)<0;当x>b时,f′(x)<0.由定理1.2.5.1(3)知,x=b不是极值点.
同理,当x<d和x>d时,f′(x)>0,故x=d也不是极值点.
当x<b时,f′(x)单调下降,故f″(x)<0.当b<x<e时,f′(x)单调上升,故f″(x)>0.
由命题1.2.5.3(1)知,点(6,f(b))为拐点.
当c<x<e时,f′(x)单调上升,故f″(x)>0.又当e<x<d时,f′(x)单调下降,f″(x)<0.由命题1.2.5.3(1)知,点(e,f(e))为拐点.
当e<x<d时,f′(x)单调下降,f″(x)<0.当x>d时,f′(x)单调上升,故f″(x)>0.由命题1.2.5.3(1)知,点(d,f(d))为曲线的拐点.
综上知,曲线y=f(x)有2个极值点和3个拐点.仅(B)入选.