【正确答案】正确答案:当R(A)=n时,|A|≠0,因为|A
*
|=|A|
n-1
≠0,所以R(A
*
)=n。 当R(A)=n-1时,|A|=0,于是A
*
A=|A|E=0,所以R(A
*
)+R(A)≤n。再由R(A)=n-1,故R(A
*
)≤1。又因为R(A)=n-1,由矩阵秩的定义,A的最高阶非零子式为n-1阶,即存在M
ij
≠0,所以A
ij
=(-1)
i+j
M
ij
≠0,从而A
*
≠0,于是R(A
*
)≥1,故R(A
*
)=1。 当R(A)<n-1时,因为A的所有n一1阶子式都为零,即所有的M
ij
=0,所以A
*
=0,于是R(A
*
)=0。
【答案解析】