设0<P(B)<1,P(A 1 )P(A 2 )>0且P(A 1 ∪A 2 |B)=P(A 1 |B)+P(A 2 |B),则下列等式成立的是 ( )
【正确答案】 B
【答案解析】解析:P(A 1 U A 2 |B )=P(A 1 |B)+P(A 2 |B)一P(A 1 A 2 |B)=P(A 1 |B)+P(A 2 |B)→P(A 1 A 2 |B)=0→P(A 1 A 2 B)=0,P(A 1 BUA 2 B)=P(A 1 B)+P(A 2 B)-P(A 1 A 2 B)=P(A 1 B)+P(A 2 B),故选B.