设0<P(B)<1,P(A
1
)P(A
2
)>0且P(A
1
∪A
2
|B)=P(A
1
|B)+P(A
2
|B),则下列等式成立的是 ( )
【正确答案】
B
【答案解析】解析:P(A
1
U A
2
|B )=P(A
1
|B)+P(A
2
|B)一P(A
1
A
2
|B)=P(A
1
|B)+P(A
2
|B)→P(A
1
A
2
|B)=0→P(A
1
A
2
B)=0,P(A
1
BUA
2
B)=P(A
1
B)+P(A
2
B)-P(A
1
A
2
B)=P(A
1
B)+P(A
2
B),故选B.