单选题 18.设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为( )
【正确答案】 C
【答案解析】因为α,β为非零向量,所以A=αβT≠O,则r(A)≥1,
又因为r(A)=r(αβT)≤r(α)=1,所以r(A)=1.
令AX=λX,由A2X=αβT.αβTX=O=λ2X得λ=0,
因为r(0E-A)=r(A)=1,所以A的线性无关的特征向量个数为3,应选C.