解答题 设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问.
问答题 21.a,b取何值时,r(Ⅰ)=r(Ⅱ),且(Ⅰ)与(Ⅱ)等价?
【正确答案】以α1,α2,α3,β1,β2,β3为列作矩阵,并对该矩阵作初等行变换化成行阶梯形矩阵:
【答案解析】本题考查在秩相等的条件下判断两向量组是否等价,需要从等价定义出发,即从(Ⅰ)可由(Ⅱ)线性表示,且(Ⅱ)又可由(Ⅰ)线性表示来考虑,也就是r(Ⅰ)=r(Ⅱ)=r(Ⅰ,Ⅱ).
问答题 22.a,b取何值时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ)不等价?
【正确答案】当a=1,b≠-1时,r(Ⅰ)=r(Ⅱ)=2,但r(Ⅰ)≠r(Ⅰ,Ⅱ)=3,故(Ⅰ)与(Ⅱ)不等价.
当a≠1,b=-1时,仍有r(Ⅰ)=r(Ⅱ)=2,但r(Ⅰ)≠r(Ⅰ,Ⅱ)=3,故(Ⅰ)与(Ⅱ)也不等价.
综上可知,当a≠1,且b≠-1,或a=1,且b=-1时,r(Ⅰ)=r(Ⅱ),从而(Ⅰ)与(Ⅱ)等价;当a=1,且b≠-1或a≠1,且b=-1时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ)不等价.
【答案解析】