解答题 18.设f′(x)连续,f(0)=0,f′(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f′(0).
【正确答案】F(x)=∫0xtf(t2-x2)dt=0xf(t2-x2)d(t2-x2)
=-x20f(u)du=0-x2f(u)du,

则n-2=2,n=4,且
【答案解析】