选择题 1.[2008年] 设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是( ).
【正确答案】 B
【答案解析】 题设中给出数列单调、有界等条件,这自然想到利用命题1.1.4.1确定正确选项,也可以用反例排错法确定之.
解一 若{xn}单调,则{f(xn)}单调.又f(x)在(一∞,+∞)内有界,可见{f(xn)}单调有界,由命题1.1.4.1知{f(xn)}收敛.仅(B)入选.
解二 举反例排错法确定正确选项.若取f(x)=arctanx,{xn)={n},则可排除(C)、(D).若取f(x)=和xn=,则=0且f(xn)=