设y ' =arctan(x一1) 2 ,y(0)=0,求∫ 0 1 y(x)dx.
【正确答案】正确答案:∫ 0 1 y(x)dx=xy(x)| 0 1 一∫ 0 1 xarctan(x-1) 2 dx =y(1)一∫ 0 1 (x-1)arctan(x一1)arctan(x一1) 2 d(x-1)-∫ 0 1 arctan(x一1) 2 dx = 0 1 arctan(x一1) 2 d(x-1) 2 = 0 1 arctantdt =
【答案解析】