FTM公司现持有A、B、C三种股票组成的投资组合。已知A、B、C三种股票的β系数分别为2.3、1.8和0.8,相应地,各股票在投资组合中所占曲比重分别为20%,50%和30%。本期无风险收益率为8%,下期的市场预测收益率及概率如表1所示。
表 1 市场预期收益率及其概率
概率 | 0.1 | 0.3 | 0.4 | 0.2 |
市场收益率 | 8% | 10% | 14% | 18% |
要求:
(1)计算市场预期收益率,并写出证券市场线(SML)的近似方程;
(2)计算该投资组合下期所要求的收益率;
(3)假设当前市场上有一新股票D可供投资,该股票的β系数为1.2,刚收到上一年派发的每股1元的现金股利,预计股利以后每年将按6%的比例增长,目前该股票的价格为15元,分析目前该股票价格是否为均衡价格,如果不是,合适的均衡价格为多少,如何能够做到。
(1)市场预期收益率=0.1×8%+0.3×10%+0.4×14%+0.2×18%=13%;
证券市场线(SML)=8%+β(13%-8%)=8%+5%β。
(2)A的预期收益率=8%+2.3×(13%-8%)=19.5%;
B的预期收益率=8%+1.8×(13%-8%)=17%;
C的预期收益率=8%+0.8×(13%-8%)=12%;
该投资组合要求的收益率=19.5%×20%+17%×50%+12%×30%=16%。
(3)均衡市场条件下,该股票的预期收益率=8%+1.2×(13%-8%)=14%;
在当前价格水平下,该股票的收益率=1×(1+6%)÷15+6%=13.07%;
即该股票的报酬率小于市场的预期收益率,所以该股票价格不是均衡价格。
若要达到均衡价格,P=1×(1+6%)÷(14%-6%)=13.25(元);
由于该股票的预期收益率低于市场的预期收益率,将有大量的投资人停止投资该股票,需求减少,从而引起价格的下降,这种下降的过程直至股票价格达到均衡价格13.25元时才会停止。