设α
1
,…,α
n—1
,β
1
,β
2
均为n维实向量,α
1
,…,α
n—1
线性无关,且β
j
(j=1,2)与α
1
,…,α
n—1
均正交.证明:β
1
与β
2
线性相关.
【正确答案】正确答案:n+1个n维向量α
1
,…,α
n—1
,β
1
,β
2
,线性相关,故有不全为0的一组数k
1
,…,k
n—1
,k
n
,k
n+1
,使k
1
α
1
+…k
n—1
α
n—1
+k
n
β
1
+k
n+1
β
2
=0,且k
n
与k
n+1
不全为0(否则k
1
,…,k
n—1
不全为0,使k
1
α
1
+…k
n—1
α
n—1
=0,这与α
1
,…,α
n—1
线性无关矛盾),用k
n
β
1
+k
n+1
β
2
与上面等式两端作内积,得‖k
n
β
1
+k
n+1
β
2
‖
2
=0,→k
n
β
1
+k
n+1
β
2
=0.且因k
n
和k
n+1
不全为0,知β
1
与β
2
线性相关.
【答案解析】