解答题
10.
[2013年] 设平面区域D由直线x=3y,y=3x及x+y=8围成,计算
【正确答案】
绘出区域D的图形,需将D分块D=D
1
∪D
2
,用分块积分法求之.为此先求出直线的交点.
如图1.5.1.9所示,由
由
将D分为D
1
与D
2
两部分:
D
1
={(x,y)∣0≤x≤2,
≤y≤3x},
D
2
={(x,y)∣2≤x≤6,
≤y≤8一x},其中点(2,6)与点(6,2)为直线的交点(见图1.5.1.9),于是
I=
x
2
dxdy=
x
2
dxdy+
x
2
dxdy=I
1
+I
2
,
其中 I
1
=
x
2
dxdy=∫
0
2
x
2
dx∫
x/3
3x
dy=∫
0
2
x
2
(3x—
)dx
=3∫
0
2
x
3
dx—
I
2
=
x
2
dxdy=∫
2
6
x
2
dx∫
x/3
8-x
dy=∫
2
6
x
2
(8一x一
)dx
=8∫
2
6
x
2
dx一
=128.
故I=
x
2
dxdy=I
1
+I
2
=
+128=138
【答案解析】
提交答案
关闭