选择题 1.[2014年] 设函数f(x)具有二阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( ).
【正确答案】 D
【答案解析】可利用函数的几何图形选出正确选项.也可利用下述命题判别之.
解一 令φ(x)=f(x)一g(x),则φ(x)=f(x)一f(0)(1一x)一f(1)x,且
φ′(x)=f′(x)+f(0)-f(1),φ″(x)=f″(x).
当f″(x)≥0时;φ″(x)=f″(x)≥0,φ(x)为凹函数.
因φ(0)=φ(1)=0,由命题1.2.6.1(2)知,当x∈[0,1]时,
φ(x)≤0,即f(x)≤g(x).仅(D)入选.
解二 由g(x)的表达式知,g(0)=f(0),g(1)=f(1),即.
f(x)与g(x)在区间[0,1]端点的函数值相等,又φ(x)=f(0)+[f(1)一f(0)]x是一条直线,斜率k=f(1)一f(0).当f″(0)≥0时,f(x)在区间[0,1]上是凹的,而g(x)是连接f(x)两个端点的弦(见图1.2.6.1),故f(x)≤g(x).仅(D)入选.