填空题
设A为三阶实对称矩阵,α
1
=(m,-m,1)
T
是方程组AX=0的解,α
2
=(m,1,1-m)
T
是方程组(A+E)X=0的解,则m 1.
1、
【正确答案】
1、正确答案:1
【答案解析】解析:由AX=0有非零解得r(A)<3,从而λ=0为A的特征值,α
1
=(m,-m,1)
T
为其对应的特征向量. 由(A+E)X=0有非零解得r(A+E)<3,|A+E|=0,λ=-1为A的另一个特征值,其对应的特征向量为α
2
=(m,1,1-m,1)
T
,因为A为实对称矩阵,所以A的不同特征值对应的特征向量正交,于是有m=1.