解答题
4.
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k-1
α≠0.证明:向量组α,Aα
2
,…,A
k-1
α是线性无关的.
【正确答案】
设有常数λ
0
,λ
1
,¨λ
k-1
,使得λ
0
α+λ
1
α+…+λ
k-1
A
k-1
α=0,则有 A
k-1
(λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α)=0,从而得到λ
0
A
k-1
α=0.由题设A
k-1
α≠0,所以λ
0
=0.类似地可以证明λ
1
=λ
2
=…=λ
k-1
=0,因此向量组α,Aα,…,A
k-1
α是线性无关的.
【答案解析】
提交答案
关闭