解答题
16.
设A和B都是m×n实矩阵,满足r(A+B)=n,证明A
T
A+B
T
B正定.
【正确答案】
显然A
T
A,B
T
B都是n阶的实对称矩阵,从而A
T
A+B
T
B也是n阶实对称矩阵.
由于r(A+B)=n,n元齐次线性方程组(A+B)X=0没有非零解.于是,当α是一个非零n维实的列向量时,(A+B)α≠0,因此Aα与Bα不会全是零向量,从而α
T
(A
T
A+B
T
B)α=α
T
A
T
Aα+α
T
B
T
Bα=‖Aα‖
2
+‖Bα‖
2
>0.根据定义,A
T
A+B
T
B正定.
【答案解析】
提交答案
关闭