解答题 16.设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
【正确答案】显然ATA,BTB都是n阶的实对称矩阵,从而ATA+BTB也是n阶实对称矩阵.
由于r(A+B)=n,n元齐次线性方程组(A+B)X=0没有非零解.于是,当α是一个非零n维实的列向量时,(A+B)α≠0,因此Aα与Bα不会全是零向量,从而αT(ATA+BTB)α=αTATAα+αTBTBα=‖Aα‖2+‖Bα‖2>0.根据定义,ATA+BTB正定.
【答案解析】