问答题 4.  给定一个由n-1个整数组成的未排序的数组序列,其元素都是1到n中的不同的整数。请写出一个寻找数组序列中缺失整数的线性时间算法。
【正确答案】方法一:累加求和
   首先分析一下数学性质。假设缺失的数字是X,那么这n-1个数一定是1~n之间除了X以外的所有数,试想一下,1~n一共n个数的和是可以求出来的,数组中的元素的和也是可以求出来的,二者相减,其值是不是就是缺失的数字X的值呢?
   为了更好地说明上述方法,举一个简单的例子。假设数组序列为[2,1,4,5]一共4个元素,n的值为5,要想找出这个缺失的数字,可以首先对1到5五个数字求和,求和结果为15(1+2+3+4+5=15),而数组元素的和为array[0]+array[1]+array[2]+array[3]=2+1+4+5=12,所以,缺失的数字为15-12=3。
   通过上面的例子可以很容易形成以下具体思路:定义两个数suma与sumb,其中,suma表示的是这n-1个数的和,sumb表示的是这n个数的和,很显然,缺失的数字的值即为sumb-suma的值。
   示例代码如下:
   def getNum(arr):
   if arr==None or len(arr)<=0:
   print "参数不合理"
   return -1
   suma=0
   sumb=0
   i=0
   while i<len(arr):
   suma=suma+arr[i]
   sumb=sumb+i
   i+=1
   sumb=sumb+len(arr)+len(arr)+1
   return sumb-suma
   
   if __name__=="__main__":
   arr=[1,4,3,2,7,5]
   print getNum(arr)
   程序的运行结果为:
   6
   算法性能分析:
   这种方法的时间复杂度为O(N)。需要注意的是,在求和的过程中,计算结果有溢出的可能性。所以,为了避免这种情况的发生,在进行数学运算时,可以考虑位运算,毕竟位运算性能最好,下面介绍如何用位运算来解决这个问题。
   方法二:异或法
   在解决这个问题前,首先回顾一下异或运算的性质。简单点说,在进行异或运算时,当参与运算的两个数相同时,异或结果为假,当参与异或运算的两个数不相同时,异或结果为真。
   1到n这n个数异或的结果为a=1^2^3^…^n。假设数组中缺失的数为m,那么数组中这n-1个数异或的结果为b=1^2^3^…(m-1)^(m+1)^…^n。由此可知,a^b=(1^1)^(2^2)^…(m-1)^(m-1)^m^(m+1)^(m+1)^…^(n^n)=m。根据这个公式可以得知本题的主要思路为:定义两个数a与b,其中,a表示的是1到n这n个数的异或运算结果,b表示的是数组中的n-1个数的异或运算结果,缺失的数字的值即为a^b的值。
   实现代码如下:
   def getNum(arr):
   if arr==None or len(arr)<=0:
   print "参数不合理"
   return -1
   a=arr[0]
   b=1
   lens=len(arr)
   i=1
   while i<lens:
   a=a^arr[i]
   i+=1
   i=2
   while i<=lens+1:
   b=b^i
   i+=1
   return a^b
   
   if __name__="__main__":
   arr=[1, 4, 3, 2, 7, 5]
   print getNum(arr)
   算法性能分析:
   这种方法在计算结果a的时候对数组进行了一次遍历,时间复杂度为O(N),接着在计算b的时候循环执行的次数为N,时间复杂度也为O(N)。因此,这种方法的时间复杂度为O(N)。
【答案解析】

[考点] 如何找出数组中丢失的数。