解答题   设f(x)二阶连续可导,f(0)=0,f'(0)=1,且[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
 
【正确答案】
【答案解析】[解] 令P(x,y)=xy(z+y)-f(x)y,Q(x,y)=f'(x)+x2y,因为[xy(x+y)-f(x)y]dx+[f'(x)+x2y]dy=0为全微分方程,所以即f"(x)+f(x)=x2,解得f(x)=C1cosx+C2sinx+x2-2,由f(0)=0,f'(0)=1得C1=2,C2=1,所以f(x)=2cosx+sinx+x2-2.
   原方程为[xy2-(2cosx+sinx)y+2y]dx+(-2sinx+cosx+2x+x2y)dy=0,整理得(xy2dx+x2ydy)+2(ydx+xdy)-2(ycosxdx+sinxdy)+(-ysinxdx+cosxdy)=0,即
   原方程的通解为