问答题 设n阶矩阵A满足A 2 +2A-3E=O.
问答题 证明矩阵A,A+2E,A+4E可逆,并求出它们的逆矩阵;
【正确答案】
【答案解析】[解] 由
所以,矩阵A可逆,且
由于 ,所以矩阵A+2E可逆,且
由于A 2 +2A-3E=O,所以A 2 +2A-8E=-5E.
而A 2 +2A-8E=(A+4E)(A-2E),即(A+4E)(A-2E)=-5E.所以,矩阵A+4E可逆,且
问答题 当A≠E时,判断矩阵A+3E是否可逆,并说明理由.
【正确答案】
【答案解析】[解] 当A≠E时,A-E≠O.
由于A 2 +2A-3E=O,因式分解得(A+3E)(A-E)=O.
令A-E=(α 1 ,α 2 ,…,α n ),其中的每一列都是齐次线性方程组(A+3E)x=0的解,而A-E不是零矩阵,说明α 1 ,α 2 ,…,α n )中至少有一个向量不为0,即齐次线性方程组(A+3E)x=0有非零解.
故矩阵A+3E不是可逆矩阵.