解答题
6.设f(x)在[a,b]三次可微,证明:

ξ∈(a,b),使得
f(b)=f(a)+f'
【正确答案】将f(x)在x
0=

展成二阶泰勒公式并分别令x=b与x=a得

其中ξ
1,ξ
2∈(a,b).上面两式相减得
f(b)—f(a)=f'

[f"'(ξ
1)+f"'(ξ
2)](b一a)
3.
注意:

[f"'(ξ
1)+f"'(ξ
2)]介于f"'(ξ
1)与f"'(ξ
2)之间,由导函数取中间值定理,可得

ξ∈(a,b),
使得 f"'(ξ)=

【答案解析】从要证的结论来看,可考虑在x
0=
