问答题
若函数φ(x)及ψ(x)是x阶可微的,且φ
(k)
(x
0
)=ψ
(k)
(x
0
),k=0,1,2,…,n一1,又x>x
0
时,φ
(n)
(x)>ψ
(n)
(x).试证:当x>x
0
时,φ(x)>ψ(x) .
【正确答案】正确答案:令u
(n-1)
(x)=φ
(n-1)
(x)-ψ
(n-1)
(x).在[x
0
,x]上用微分中值定理得 u
(n-1)
(x)-u
(n-1)
(x
0
)=u
(n)
(ξ).(x-x
0
),x
0
<ξ<x. 又由u
(n)
(ξ)>0可知u
(n-1)
(x)-u
(n-1)
(x
0
)>0.且u
(n-1)
(x
0
)=0,所以u
(n-1)
(x)>0,即当 x>x
0
时,φ
(n-1)
(x)>ψ
(n-1)
(x). 同理u
(n-2)
(x)=φ
(n-2)
(x)-ψ
(n-2)
(x)>0. 归纳有
(n-3)
(x)>0,…,u'(x)>0,u(x)>0.于是,当x>x
0
时,φ(x)>ψ(x).
【答案解析】