【答案解析】解析:令x-t=u,作积分变量代换,得 f(x)=∫
x
0
f(u)sin(x-u)d(-u)﹢x=∫
0
x
f(u)sin(x-u)du﹢x =sin x∫
0
x
f(u)cos udu-cos x∫
0
x
f(u)sinudu﹢x, f
’
(x)=cos x∫
0
x
f(u)cos udu﹢sin x·cos x·f(x)﹢sin x∫
0
x
f(u)sin udu-cos x·sin x·f(x)﹢1 =cos x∫
0
x
f(u)cos udu﹢sin x∫
0
x
f(u)sin udu﹢1, f
”
(x)=-sin x∫
0
x
f(u)cos udu﹢cos
2
x·f(x)﹢cos x∫
0
x
f(u)sin udu﹢sin
2
x·f(z) =f(x)-f(x)﹢x=x, 所以f(x)=

﹢C
1
x﹢C
2
.又因f(0)=0,f
’
(0)=1,所以C
1
=1,C
2
=0.从而
