单选题 设f(x)在区间(-∞,﹢∞)上连续,且满足f(x)=∫ 0 x f(x-t)sin tdt﹢x.则在(-∞,﹢∞)上,当x≠0时,f(x) ( )
【正确答案】 C
【答案解析】解析:令x-t=u,作积分变量代换,得 f(x)=∫ x 0 f(u)sin(x-u)d(-u)﹢x=∫ 0 x f(u)sin(x-u)du﹢x =sin x∫ 0 x f(u)cos udu-cos x∫ 0 x f(u)sinudu﹢x, f (x)=cos x∫ 0 x f(u)cos udu﹢sin x·cos x·f(x)﹢sin x∫ 0 x f(u)sin udu-cos x·sin x·f(x)﹢1 =cos x∫ 0 x f(u)cos udu﹢sin x∫ 0 x f(u)sin udu﹢1, f (x)=-sin x∫ 0 x f(u)cos udu﹢cos 2 x·f(x)﹢cos x∫ 0 x f(u)sin udu﹢sin 2 x·f(z) =f(x)-f(x)﹢x=x, 所以f(x)= ﹢C 1 x﹢C 2 .又因f(0)=0,f (0)=1,所以C 1 =1,C 2 =0.从而