问答题
设f(x)在x
0
处n阶可导,且f
(m)
(x
0
)=0(m=1,2,…,n-1),f
(n)
(x
0
)≠0(n≥2),证明:
(1)当n为偶数且f
(n)
(x
0
)<0时,f(x)在x
0
取得极大值;
(2)当n为偶数且f
(n)
(x
0
)>0时,f(x)在x
0
取得极小值.
【正确答案】正确答案:n为偶数,令n=2k,构造极限

(1)当f
(2k)
(x
0
)<0时,由极限保号性=>存在x
0
的某个去心邻域

=>f(x)<f(x
0
),故x
0
为极大值点. (2)当f
(2k)
(x
0
)>0时,由极限保号性=>存在x
0
的某个去心邻域

【答案解析】