【正确答案】正确答案:根据题意随机变量(X
1
,X
2
)是离散型的,它的全部可能取值为(0,0),(0,1),(1,0)。题目中是要计算出取各相应值的概率。注意事件Y
1
,Y
2
,Y
3
相互独立且服从同参数p的0—1分布,所以它们的和Y
1
+Y
2
+Y
3

Y服从二项分布B(3,p)。于是 P{X
1
=0,X
2
=0}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
≠2}=P{Y=0}+P{Y=3}=(1一p)
3
+p
3
, P{X
1
=0,X
2
=1}=P{Y
1
+Y
2
+Y
3
≠1,Y
1
+Y
2
+Y
3
=2}=P{y=2}=3p
2
(1一p), P{X
1
=1,X
2
=0}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
≠2}=P{Y=1}=3p(1一p)
2
, P{X
1
=1,X
2
=1}=P{Y
1
+Y
2
+Y
3
=1,Y
1
+Y
2
+Y
3
=2}=

计算可得(X
1
,X
2
)的联合概率分布为
