填空题
21.
设A是三阶矩阵,ξ
1
,ξ
2
,ξ
3
是三个线性无关的三维列向量,满足Aξ
i
=ξ
i
,i=1,2,3,则A=________
1、
【正确答案】
1、E
【答案解析】
因Aξ
1
=ξ
2
,Aξ
2
=ξ
2
,Aξ
3
=ξ
3
,合并成矩阵形式有
[Aξ
1
,Aξ
2
,Aξ
3
]=A[ξ
1
,ξ
2
,ξ
3
]=[ξ
1
,ξ
2
,ξ
3
],
ξ
1
,ξ
2
,ξ
3
线性无关,[ξ
1
,ξ
2
,ξ
3
]是可逆阵,故A=[ξ
1
,ξ
2
,ξ
3
][ξ
1
,ξ
2
,ξ
3
]
-1
=E.
提交答案
关闭