问答题
设α=[a
1
,a
2
,…,a
2
]
T
≠0,A=αα
T
,求可逆矩阵P,使P
-1
AP=Λ.
【正确答案】正确答案:(1)先求A的特征值. 利用特征值的定义. 设A的任一特征值为λ,对应于λ的特征向量为ξ,则 Aξ=α
T
αξ=λξ. (*) 若α
T
ξ=0,6则λξ=0,又ξ≠0,故λ=0; 若α
T
ξ≠0,(*)式两端左边乘α
T
,得α
T
αα
T
ξ=(α
T
α)α
T
ξ=λ(α
T
ξ). 因α
T
ξ≠0,故λ=α
T
α=
(2)再求A的对应于λ的特征向量. 因为A=αα
T
,当λ=0时,(λE-A)X=-αα
T
X=0,因为满足α
T
X=0的X必满足αα
T
X=0,故当λ=0时,对应的特征方程是a
1
x
1
+a
2
x
2
+…+a
n
x
n
=0.对应λ=0的n-1个特征向量为 ξ
1
=[a
2
,-a
1
,…,0]
T
, ξ
2
=[
3
,0,-a
1
,0]
T
, …… ξ
n-1
=[a
n
,0,0,…,-a
1
]
T
. 当λ=
=α
T
α时,对矩阵λE-A=α
T
αE-αα
T
两端右边乘α,得 (λE-A)α=(α
T
αE-αα
T
)α=(α
T
α)α-α(α
T
α)=0, 故知α=[a
1
,a
2
,…,a
n
]
T
即是所求ξ
n
. (3)最后由ξ
1
,ξ
2
,…,ξ
n
,得可逆矩阵P.