若f(x)在x 0 处可导,且f(x 0 )=a,f(x 0 )=b,而|f(x)|在x 0 处不可导,则( ).
【正确答案】 B
【答案解析】解析:因f(x)在x 0 处可导,故也连续。假若f(x 0 )=a≠0,不妨设a>0,则在x 0 的某领域中f(x)>0,从而在此领域内|f(x)|=f(x),它在x 0 处也可导,矛盾。即a=0。另一方面若f(x 0 )=b=0,则